
CPS122 Lecture: Quality Assurance Last revised March 22, 2023

Objectives:

1. To define key terms: “failure”, “fault”, and “error”
2. To introduce and distinguish between unit, integration, acceptance, and 

regression testing.
3. To introduce method preconditions, postconditions; class invariants.
4. To introduce and distinguish between black box and white (glass, clear) box testing.
5. To discuss the process of choosing test cases, including the notion of 

equivalence classes and path, edge, and node (statement) coverage.
6. To introduce and distinguish between top-down, bottom-up, and “sandwich” 

testing, and to introduce the notion of test “scaffolding”.
7. To discuss testing, inspection, and formal verification as alternate and 

complementary means of attempting to ensure program correctness.
8. To introduce the process of reasoning from preconditions & invariant to 

postconditions and invariant.
9. To introduce the use of loop invariants and loop termination conditions

Materials

1. Projectables
2. Gries’ coffee can problem - demo
3. Demo of old version of SimpleDate using a test driver main method
4. Handout for coffee can problem showing proof of playOneRound
5. Handout of proof of fast exponentiation

I. Introduction

A. In our study of the software lifecycle, we have seen that one of the 
major activities is quality assurance (or verification and validation).  

1. While we are covering this as a distinct topic in the course, it is 
important to note that quality affects every aspect of the software 
lifecycle - it is not an add on at the end of the process. Most of what I 
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will say in this series of lectures pertains to quality assurance in general 
- regardless of where in the lifecycle it is actually done.

a) A key principle is that the earlier an error is discovered, the less 
expensive it is to fix - often by as much as an order of 
magnitude or more.   

 

For example, suppose the requirements for a piece of software 
contain an error.  Fixing the defect in the requirements is clearly 
a lot easier than if the software, after being written to fulfill the 
erroneous requirements, now has to be changed to do what is 
should have done in the first place.  

 

(An example of this from a different realm - some time ago a 
contractor came out and put new gutters on my neighbors house.  
Alas - they had the wrong street address - she hadn’t contracted 
for any work on her house by them!  The result was that she got 
a free set of gutters!)

b) Nonetheless, it is common for extensive effort to be expended 
on verification and validation at the end of the software 
lifecycle, which is why we consider this topic here.

2. It is not uncommon for testing (and fixing the errors that testing 
uncovers!) to represent half or more of the time (and hence half or  
more of the cost) of initial development of a software product.  
Obviously, then, this aspect of program development is a prime 
target for savings.

a) Unfortunately, in practice, savings are often achieved in this 
area by shortcuts that result in products being delivered that do 
not do what they are supposed to do, or produce "blue screens" 
or other unpleasant phenomena.  Clearly, this is not an ethical or 
professional approach to developing software.
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b) We can save testing and error correcting effort legitimately by 
approaching it in a correct way - which is the focus of this series 
of lectures.  

B. Before going further, we need to be sure we are clear about several 
related terms that are often used interchangeably, but really have 
distinct meanings: “failure”, “fault”, and “error”.  

1. Failure refers to an observable incorrect behavior of a system.  A 
failure may be as minor as an appearance problem in a GUI, or it 
may be that the software causes they system to crash.

2. A fault is something that is wrong with the software.  All failures 
are caused by faults, but not all faults manifest themselves as 
failures - at least during testing.  

3. An error is the mistake the caused the fault.  Faults exist because of errors 
- but it is possible for an error to not result in a fault.  (E.g. most of us 
have made driving errors that have not resulted in collisions.) 

 

EXAMPLE: Consider the following java code, which is supposed to 
calculate the average of all the elements in an array of floats: x:  

 

float sum = x[0];  
for (int i = 0; i < x.length; i ++)  

sum += x[i];  
System.out.println(“The average is “ + sum / x.length);  
 
PROJECT

a) What’s wrong with this code segment?  

 

ASK  

 

For some reason, the programmer included x[0] in the sum twice.  
Either the initialization should have been sum = 0, or the for loop 
should have started at 1.   If the programmer intended the latter, then 
the error was carelessness in typing the initial value for i in the loop.
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b) In any case, the fault in this software is that it calculates the 
average incorrectly by counting x[0] twice.

c) The failure that would result from this fault is that an incorrect 
average is printed to System.out.

d) Would this code always result in a failure (an incorrect average being 
printed?) 

 

ASK 

 

No - not if x[0] happens to be zero! (or is so small, relative to the 
overall sum, that counting it twice doesn’t produce a noticeably 
wrong result.) 

 

Nonetheless, a fault is present, whether or not it results in a failure.

4. Note that we distinguish between errors that arise from how the 
software is used from faults in the software.  Quality software 
anticipates things that can go wrong in “the outside world” and is 
prepared to cope with them.  

a) Software must be prepared to deal with all sorts of  external 
problems such as a communication link failure or another 
computer system being down or a file not existing on disk or a 
human error in typing input.

b) However, it is very bad practice to try to cover up exceptions that arise 
from faults in the software - e.g. code like the following might prevent 
a failure, but at the cost of hiding a fault: 
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try  
{  
    // Some code  
}  
catch(Exception e) // Catches any exception  
{ } // and simply ignores it  
 
PROJECT 

C. There are three broad categories of quality-assurance activities. 

1. Execution-Based Testing

2. Inspections

3. Formal Proof of Correctness

D. All three need to take place at several points during and after the 
implementation process.  THEY SHOULD NOT BE LEFT TO THE 
END!  For starters, we will focus on execution-based testing.

1. One approach to testing (which I am not advocating) is called the 
"big bang approach".  It goes like this: write all the code, and then 
when everything is written, test it

a) This is a common method used by introductory CS students

b)  It usually leads to chaos when applied to large programs.  When  
something goes wrong, where do you look?

c) The other approaches are therefore much to be preferred!

2. Software of any size should be tested by using a combination of 
UNIT TESTING and INTEGRATION TESTING, followed 
eventually by ACCEPTANCE TESTING

a) Unit testing means testing each piece of the software 
individually when it is coded to ensure that it performs its part 
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of the overall computation correctly. 

 

Note that unit testing can (and should) take place as the software 
is being written.  We have already looked at an approach to this 
using JUnit.

b) Integration testing means testing as the various units are put 
together into larger pieces or a complete program

(1)If every component has been successfully unit-tested, then 
any remaining errors should be interface errors - cases where 
a  caller of a method made different assumptions about what 
the method does than the author of the method assumed. 
 

EXAMPLE:  
 

Suppose a certain method is required to compare two objects 
and return true or false based on their relative order in a 
sorted list.  Assume this method is used by another method 
that actually sorts the objects. 
 

Suppose the author of the method understands the 
expectation to be that the method returns true if the first 
object belongs before the second (i.e. they are in their correct 
relative order) but the author of a sorting method that uses it 
assumes that it returns true if the second object belongs 
before the first (i.e. their relative order needs to be switched.) 
 

Both methods would test successful during unit testing 
(based on their author’s understanding of the interface 
between them.)   However, the error would show up in 
integration testing with the output being backwards!

(2)Integration testing is often a crisis time in software development - 
but need not be if the preconditions and postconditions of 
methods are spelled out carefully before  coding begins.  (As we 
discussed in connection with implementation.)
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(3)In a large system, integration testing can occur at many 
levels, as larger and larger pieces of the final system are 
integrated with one another.

c) Acceptance testing is performed by the customer before 
“signing off” on the finished project. 
 
Sometimes formal acceptance testing is preceded by “alpha 
testing” and “beta testing”.  (The cynic in me can wonder how 
much commercial software that one buys is really only at beta 
level - or below!)

3. Because fixing one problem with a piece of software often 
introduces another problem, there is also a need for REGRESSION 
TESTING.  This involves repeating tests that have already 
succeeded after every change to be sure that the software still 
works correctly.

E. The author of a piece of software is not necessarily the best person to 
test it, for two reasons:

1. Psychology: Often people are reluctant to "break" their own code 
and hence may not test as thoroughly.

2. If the author of the software has  misunderstood the requirements, 
she is unlikely to test for it.  Having another person do the testing 
makes it more likely that a misunderstanding will be caught.

3.  For this reason, many organizations have a separate "Software 
Quality Assurance Group" to do final testing.  In this case

a) Software authors unit and integration test their software before 
releasing it to the QA group.

b) The QA group will do final testing based on the original 
specifications.
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c) Doing things this way helps prevent the possibility that a 
software author didn’t think about how the program would 
handle a certain piece of anomalous input, so his/her test data 
never tests it!

F. Quality assurance has, as its first goal, the prevention of errors.  Given 
that this is not 100% possible, the second goal of quality assurance is 
to find and remove faults.  Thus, quality assurance activities like 
inspection and testing are successful just when they find faults - not 
when they fail to find faults! 

 

(Consider the process you go through of testing a program before you 
turn it in.  The testing process is actually successful if the faults cause 
visible failures that you can fix.  Having the software appear to work 
correctly - even though it contains faults - is not success at this point!)

II.Preconditions, Postconditions, and Invariants,

A. As a preliminary to planning a testing strategy, it is useful to think 
about the preconditions and postconditions for the various methods 
(and sometimes also for the system as a whole), and about invariants 
for the various classes (and sometimes for the system as a whole).

1. A precondition for a method is a statement of what must be true in order 
for the method to be validly called.  A precondition for an overall system 
is what must be true of the input for the system to be used validly. 
 

EXAMPLE:  
 

As you may discover in lab, the remove(int) method of a List 
collection can be used to remove a specific element of a List.  However, 
the method has a precondition that the specified element must exist - e.g. 
you  can’t remove the element at position 5 from a list that contains 3 
elements, nor can you remove the element at position 0 (the first position) 
from an empty list. 
 

What happens if you fail to observe this precondition? 
 

ASK
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2. A postcondition for a method or overall system is a statement of 
what the method/system will guarantee to be true - provided it is 
called/used with its precondition satisfied. 
 

EXAMPLE: The postcondition for the remove(int) method of a 
List collection is that the specified element is removed and all 
higher numbered elements (if any) are shifted down - e.g. if you 
remove element 2 from a List, then element 3 (if there is one) 
becomes the new element 2, element 4 (if there is one) becomes 
new element 3, etc. 
 

Note that a method is not required to guarantee its postcondition if 
it is called with its precondition not satisfied.  (In fact, it’s not 
required to guarantee anything!)

3. An invariant is a statement that is kept true of something.   As an 
example, consider the following problem (a classic example first 
suggested by David Gries in 1981): 
 
"A coffee can contains some number of black beans and some 
number of white beans.  The following process is repeated as long 
as possible:  Randomly select two beans from the can.  
- If they have the same color, throw them out, but put another black 
bean in.  (Enough extra black beans are available to do this.).  
- If they are of different colors, place the white bean back in the can 
and place the white bean back in the can and throw the black one 
away.   
 
Execution of this process always reduces the total number of beans 
in the can by one, so repetition of this process staring with a non-
empty can must terminate with exactly one bean in the can, for 
then two beans cannot be selected. 
 
Question: by looking at the number of beans in the can initially, 
can you tell what the color of the final bean will be?
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a) DEMO once.

b) It turns out that this question can be answered by discovering an 
invariant property of the can. 
 
DEMO again with prediction 
 
ASK Class to come up with ideas as to what the invariant is.

c) It turns out that the invariant is the "oddness" of the number of 
white beans in the can. 
 
- If we pick two beans of the same color and throw them away, 
then we either reduce the number of white beans by 2 or not at 
all - so the oddness of the number of white beans doesn't 
change. 
 
- If we pick two beans of different colors, putting the white one 
back in the can doesn't not change the number of white beans. 
 
- Thus, if the number of beans in the can to start with is odd, the 
final bean will be white; if it is even, the final bean will be 
black.

4. We can use invariants in several places:

a) Sometimes, a system as a whole will have an invariant property. 
 
Example: If a person has two bank accounts and transfers 
money between them, the total amount of money the person has 
in the bank is invariant.

b) A class invariant is a something that is held true for an object of 
the class regardless of what operations are performed on it. 
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Example: The coffee can program we just demonstrated uses a 
class called CoffeeCan that has an invariant that the "oddness" 
of the number of white beans stays unchanged.

c) A loop invariant is something that is held true for each time 
through the loop.  We'll look at an example shortly. 

5. An invariant has two essential properties: establishment and 
preservation. 

a) Establishment: It is satisfied initially.   

(1)In the case of a class invariant, a primary responsibility of each 
constructor  in a class is to make sure that any newly-
constructed object satisfies the class invariant.

(2)In the case of a loop invariant, it is the responsibility of the code 
just before the loop is entered to make sure the invariant is true 
to begin with.

b) Preservation: The invariant remains true after each operation.

(1)In the case of a class invariant, calling a public method of 
the class with the invariant true and the preconditions of the 
method satisfied results in the invariant remaining true 
(though it may temporarily become false during the 
execution of the method) 
 
Therefore, a primary responsibility of any public method is 
to preserve the invariant. 
 
Technically, private methods are not required to preserve the 
invariant - so long as public methods call them in such a way 
as to restore the invariant before the public method 
completes. 
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That is, the class invariant must be satisfied only in states 
which are visible to other classes.  It may temporarily 
become false while a public method is being executed.

(2)In the case of a loop invariant, if the loop body is started 
with the invariant true, then the invariant remains true when 
the loop body completes. 
 
Note that the loop invariant may become temporarily not 
true in the middle of the loop, as long as it becomes true 
again before the body completes.

6. Invariants can be used to show the correctness of code - especially code 
that is somewhat "tricky" 
 
Example: consider the following code, which is an efficient way to raise a 
number to a power.   (It takes time O(log exponent) rather than 
O(exponent)) 
 
/** Raise a number to a power  
 *  @param base the number to raise to a power  
 *  @param exponent the power to raise it to  
 *  @return base raised ** exponent  
 */  
public static double power(double base, int exponent)  
{  

double v = 1.0, b = base;  
int e = exponent;  
while (e > 0)  
{  

if (e % 2 == 0)  
{  

b *= b;  
e /= 2;  

}  
else  
{  

v *= b;  
b *= b;  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e /= 2;  
}|  

}  
return v;  

}  
 
PROJECT 
 
To show the correctness of the code, we observe that the while loop has 
the invariant v * b ** e = base ** exponent.

a) Established initially since b is initially base and e is initially exponent

b) Preserved each time through the loop 

(1) If e is even, b bis squared and e is divided by 2, which preserves b 
** e and hence the invariant.

(2) If e was odd to begin with, we do the same thing, but also since e 
is an integer we need to multiply v by b to compensate for the fact 
that the division is not exact.

III.Execution-Based Testing

A. In this section, we will focus on what is sometimes called “execution-
based testing” - i.e. running the software (or a portion of it) under 
controlled conditions and identifying failures.  Execution-based 
testing, of course, can only take place during or after the 
implementation portion of the software lifecycle (though there has 
been some interest in the notion of “executable specifications” that 
would allow this kind of testing earlier in the process).

B. All too often, testing is approached as follows: we write code that we 
think is correct, and then we test it with data for which the correct 
results are known.  When discrepancies are found, we locate their 
source  and repeat the testing procedure until all tests produce correct 
results. 
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1. But does this process really mean that we have succeeded in 
producing correct software?  - NO - it simply means we have 
succeeded in producing software that correctly handles all of the 
cases we have anticipated.

a) Note that many serious errors have arisen precisely because the 
developers of a system did not anticipate some possible input 
when specifying and designing the system.  It is not surprising 
that, in such cases, no test data showed the fault. 

 

EXAMPLES: Y2K; rising moon in NORAD's first missile 
warning system

b)  Of course, no system can totally prevent such situations from 
arising.  The fact that they have occurred should keep us from 
overconfidence in software that “passed all the tests”.

2. Does this process give us confidence in the correctness of our 
software? - NO - because each time we find an error we begin to 
wonder what others might be lurking out there undetected.  

a) Harlan Mills put it this way: 
 

"There is no foolproof way ever to know that you have found 
the last error in a program.  So the best way to acquire 
confidence that a program has no errors is never to find the first 
one, no matter how much it is tested and used."  (In 'How to 
Write Correct Programs and Know it').

b) One textbook author spoke of what he called “the law of 
conservation of bugs”: 
 

“The number of bugs remaining in a large system is proportional 
to the number of bugs already fixed.  In other words, a fault-
ridden system will always tend to remain a fault-ridden system.  
This is because a poorly-designed system will not only have more 
faults to start with, but will also be harder to fix correctly and 
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hence will suffer more strongly from the ripple effect.”  (The 
phenomenon that fixing one fault often introduces another.)

3. When testing is done by the same person who wrote the software, a  
third problem also comes into play: a psychological one.  Since we 
really hope our software is correct (and we don't want to have to rework 
it  again), it's easy for us to not test it as rigorously as we should. 

4. As we noted earlier, waiting until the code is all written before testing it  
means that correcting some kinds of errors will be very costly.

a)  If the software specifications were wrong, and this isn't 
discovered until it is tested, then the whole piece of software 
may have to be rewritten virtually from scratch!

b) Thus, effort is conserved if we try to ensure correctness at every 
step along the way, rather than waiting to test the finished product.

C. Choosing good test data is critical - but is often the hardest task of all.

1. Ideally, we would like to test our software EXHAUSTIVELY - i.e. 
by testing every possible input.  But if we could do that, we 
probably wouldn't need to bother writing the program! 
 

EXAMPLES:  
 

If a program accepts a single integer as input, there are 4 billion 
possible cases that might need to be considered! 
 

Even if the values it accepts are limited, they can interact - e.g. a 
program that accepts 5 integers in the range 1..10 actually has 105 
or 100,000 possible cases

2. We are therefore forced to use only a small subset of the possible  
inputs for testing.  How we choose this subset depends in part on 
whether we are doing black box or white (glass, clear) box testing.
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a) White box testing (also known as glass or clear box testing) is 
done by choosing cases based on the code, with an attempt to 
achieve some sort of "coverage" of all portions of the code.

b) Black box testing is done without regard to any knowledge of 
the internal structure of the software.  Test cases are chosen only 
on  the basis of the specifications.

c) Commonly, testing done by the program's authors during 
development uses a clear box approach, while final acceptance 
testing (often done by a separate QA group) is done using a 
black box approach.

3. In either case, we can use preconditions, postconditions, and 
invariants to guide our testing.

D. Choosing test cases for white/clear/glass box testing

1. There are several different levels of coverage we can attempt to achieve

a) Statement coverage - we ensure that every statement is tested by at 
least one test case.  (The text author calls this “node coverage”.)

b) Path coverage - we ensure that every possible path through the 
program is taken.  (This necessarily implies statement coverage)  
Of course, for programs containing loops, this is impossible, 
since there are infinitely many possible cases.

c) Edge coverage - we ensure that every possible edge in the 
program graph is taken at least once.  (A practical alternative to 
path coverage.)  
 
EXAMPLE: The following is a highly-simplified example to 
illustrate the difference.  Consider the following block of code, 
where the “S”’s are arbitrary statements that don’t affect the 
value of x or y: 
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if (x < 0)  
    S1;  
else  
    S2;  
if (y < 0)  
    S3;  
 
This corresponds to the following flow graph 
 

 
 
PROJECT CODE AND F LOWCHART

(1)To achieve statement coverage, we need to ensure that each 
statement (S1, S2, S3 and the if tests) is executed at least once.  
This can be done with just two sets of test data.  Can anyone see a 
way to do this?  (Actually there are lots of possibilities) 
 

ASK

(a)x = -1, y = -1 (tests S1, S3 and ifs) 
(b)x = 1, y = -1 (adds S2) 
 
PROJECT

x < 0

S1S2

TF

y < 0

S3

TF
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(2)To achieve edge coverage, we need to ensure that each of the 
edges in the graph is traversed at least once.  The above data 
set misses one edge.  Which one?  

 

ASK  

 

The “false” edge out of the second test (s < 0).   

 

We could achieve edge coverage by adding a data set like 
x = 1, y = 1.  (For that matter, in this case we could change 
the second original data set to this as well)

(3)To achieve path coverage, we need to ensure that each 
possible path through the program is executed.   How many 
possible paths are there?  

 

ASK  

 

Four (two possibilities for x) * (two possibilities for y)  

 

For example, the following data would test all paths:  

(a)x = -1, y = -1 (right, right)
(b)x = -1, y = 1 (right, left)
(c)x = 1, y = -1 (left, right)
(d)x = 1, y = 1 (left, left) 
 
PROJECT

2. In practice, statement coverage and edge coverage are both possible 
- and edge coverage is preferable since it implies statement 
coverage.  Path coverage, however, is often not practical, due to the 
large volume of cases that might be needed.  

 

Example: a program has 10 inputs, each of which selects one of 
two paths at a branch in the program.  There are potentially 210 
(=1024) paths.  With 20 variables, this jumps to over 1 million.  

 

A single loop can generate a near-infinite number of possibilities.   

 

Example:  
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int x;  
while (x > 0) {  

if (x == 3)  
S1;  

else  
S2;  

x = x / 2;  
}  

 
 

Possible paths include the following, all of which differ:  

 

x = 0 (nothing) 
x = 1: S2 
x = 2: S2, S2 
x = 3: S1, S2 
x = 4: S2, S2, S2 
x = 6: S2, S1, S2 
... 
 
PROJECT 
 
And so on for infinitely many possibilities (or at least as many as 
there are possible values of x represented by an int on the 
underlying machine) 

E. Choosing test cases for black box testing.

1. In identifying test cases for black box testing, it is helpful to realize 
that the set of all possible data the program can handle (which is 
often large if not infinite) can be partitioned into equivalence 
classes. 

 

EXAMPLE:   

 

Suppose one input to a program must be an integer in the range 
0..100.  Suppose the program is supposed to do some computation 
with the valid integers, and to print an error message for an invalid 
integer.  
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The equivalence classes are: negative integers, integers between 0 
and 100 (inclusive) and integers greater than 100.

2. For each equivalence class, we want to be sure that our test data includes

a) A typical input from the class (e.g. 20 or 50 or 98 would be 
suitable for the class of integers in the range 0..100)

b) If the class represents valid input, boundary inputs - values that 
lie right on the edges of the class - e.g. for integers in the range 
0..100, the boundary values would be 0 and 100.

c) If the class represents invalid input, values that are barely illegal 
(just on the wrong side of the boundary)  - e.g. -1 for the class of 
negative integers and 101 for the class of integers > 100.

3. A common error I have noticed in student test plans is to expend a 
lot of effort on all sorts of illegal input  (including really bizarre 
possibilities) while not testing correct input at all, or in only a very 
limited way!  The  result is that we have confidence that the 
program can handle the bizarre nicely, but no confidence that it will 
do  the right thing in the normal case!) 

F. One question that arises in this context is “how can I do unit testing or 
even integration testing of software that depends on other code that 
hasn’t yet been written?”

1. We have to develop classes in some order, and therefore must be able 
to test one class while other classes have not yet been written.  This 
complicates testing because we get into a "chicken and egg"  problem. 

 

EXAMPLE:  

 

Suppose a method mA of class A uses a method mB of class B.  
Suppose further - as will often be the case - that mA produces some   
output that is visible to the user (and thus can be examined during 
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testing), but mB produces no directly visible output.  Which class  
should we implement and unit test first?

a) If we try to implement class A first, then when we try to test mA 
we run into a problem because it relies on mB, which has not 
yet been written.

b) If we try to implement class B first, then when we try to test mB 
we run into a problem because it produces no visible results - 
the results of mB are only visible when  it is called by mA, 
which has not yet been written.

2. In general, there are two broad approaches to the question of “in 
what order do we implement the classes”, called TOP-DOWN and 
BOTTOM-UP.  We can see where these names come from if we 
arrange the classes hierarchically, so that each class only depends 
on (makes use of the methods of) classes below it in the hierarchy - 
so we get something like this: 
 

 
 
PROJECT 
 

(actually, this kind of strict hierarchical structure is more common 
in non-OO systems than in OO systems, which tend to have more 

D E F G

B C

A
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cooperating peers.  Even so, though, it is often good practice to 
arrange the objects in an OO system in layers).

a) In a top down approach, we might implement and unit test 
modules in the order A, B, D, E, C, F, G.

b) In a bottom up approach , the order might be D, E, B, F, G, C, A.

c) Also possible (and useful in many cases) is a “sandwich” 
approach in which we first do the “bread” (A, D, E, F, G) and 
then the “filling” (B and C).  (This approach is common if the 
highest layers are the GUI and the lowest layers provide utility 
services like access to a database, with the middle layers being 
the business logic.)

3. Whichever order of implementation and testing we choose, we are 
forced to create some extra code just to allow us to perform testing.  
 

This code is often called scaffolding - by analogy to building 
construction,, where temporary structures (scaffolds) are built to 
allow work on the target structure.

a) Consider the matter of unit testing a method that relies on another 
method not yet written - as would happen in the above if we 
chose to develop A first (or for that matter to develop B or C 
before developing D, E, F, and G.)  In this case,  one must write a 
STUB - a piece of code that stands in for   the as-yet unwritten 
method by doing something reasonable,   like simply printing out 
the fact that it was called or  returning a known "dummy" value.  
 

Note: In the skeleton code I gave you for the first registration 
system lab, all of the method prototypes were present, mostly 
with empty bodies.  In the case of a method that returns a value to 
its caller, a  dummy return statement (labeled STUB) was inserted 
to return an acceptable value (typically null) so the code would 
compile.  These were not full-blown stubs, since a stub used for 
top-down testing would have to be able to produce a  full range of 
possible results (which may mean interactively  asking the user to 
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specify a particular result).  E.g. in the registration system lab, a 
complete stub for the getCourse(String id) method of  class 
Database would have to ask the user whether it should return null 
(as it now does) or an arbitrary valid course.

b) Now consider the matter of unit testing a method before its  
caller has been written - as would happen in the above  example 
if we chose to develop D, E, F, or G first (or to develop B or C 
before developing A).  To do this, it is  necessary to write a 
piece of "throwaway" code called a  TEST DRIVER to call the 
method under test with various inputs   and report its results.   

(1)One approach is to create a separate program that performs the 
testing by requesting input from the user (or providing some 
constant input), calls the method under test, and then either reports 
the result or checks the result against a known good value. In Java, 
this can often be  incorporated into a class as a main method that 
serves to exercise that class.  (A Java program can have main 
methods in any number of classes - one is designated as the main 
method for the program when it is run and the rest are ignored.).  
Thus, a Java class that is not a main class could still have a main 
method which serves as its test driver. 
 

EXAMPLE: An earlier version of the SimpleDate.java class I gave 
you for the project incorporated the following test driver 

 

(PROJECT) 

 

public static void main(String [] args)  
{  

SimpleDate today = SimpleDate.getToday();  
SimpleDate tomorrow = today.daysLater(1);  
SimpleDate aWeekFromNow = today.daysLater(7);  
 

System.out.println("Today is " + today);  
System.out.println("Tomorrow is " + tomorrow);  
System.out.println("A week from now is " +  

aWeekFromNow);  
 

System.out.println("A week from now is " +  
aWeekFromNow.daysAfter(tomorrow) + " days  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after tomorrow");  
 

System.out.println("Today equals tomorrow: " +  
today.equals(tomorrow));  

System.out.println("Today is after tomorrow:  " +  
today.isAfter(tomorrow));  

System.out.println("Tomorrow is after today:  " +  
tomorrow.isAfter(today));  

 

// Unless the program is started a few seconds  
// before midnight, the newly constructed object  
// should test the same as today  
 

try { Thread.sleep(10000); }  
catch(InterruptedException e)  
{ }  
 

SimpleDate tenSecondsLater = new SimpleDate();  
System.out.println("Ten seconds later equals " +  
    "today "+tenSecondsLater.equals(today));  

System.out.println("Ten seconds later is after "+  
"today  " + tenSecondsLater.isAfter(today));  

 

// Now test the code for diddling with today  
 

SimpleDate.changeTodayBy(5);  
System.out.println("After diddling with the " +  

"date, today is " + SimpleDate.getToday());  
}  

 

With this code in place, it was possible to run the class as if it were 
a standalone program, and then manually examine the output to see 
if all the methods were doing the right thing. 

 

(DEMO)

(2)We have used an approach to unit testing called test-first 
development, and have made use of a facility available in the Java 
world called JUnit.  (Similar facilities are available for other 
languages - e.g. pyunit we used in CPS121.   In effect, what these 
tools do is facilitate the process of writing test drivers.
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(3)Note that it is usually only necessary to develop one or the other 
type of scaffolding.  Once we have tested a method that relies on 
stubs for as-yet unwritten methods it calls, we can use it to help 
us test those methods when they are written.  Conversely, if  we 
have tested a method using a test driver, we can then use it to 
help us test the methods that call it. 

c) Object-oriented testing is a still a significant research area.  A 
key  question that is not yet fully answered is how best to test a 
class in isolation (as a unit) when classes are designed to work 
together.

G. When errors are uncovered during testing, we must, of course, locate 
and correct them - a task that is often easier said than done!

1. This task is made easier if we are disciplined about unit testing and 
integration testing, since the amount of code we must consider 
when looking for the error is kept down.

a) During unit testing, we must of course only consider the unit 
being tested (or perhaps the test driver!)

b) During integration testing, we can focus our attention on the 
INTERFACES between the previously tested units.

2. One tool that can often be used to help us here -  is one that is 
commonly (but perhaps erroneously)  called a SYMBOLIC 
DEBUGGER. 
 

(We won't be able to use this in CPS122, but you will encounter 
one in a later course if you continue in CS.)

H. Finally, it should be noted that effective testing calls for a TEST 
PLAN.  A TEST PLAN must address issues like:

1. Scaffolding that needs to be built

2. Testing procedures - including the order in which various tests are done.
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3. The test suite - the actual data to be used.  Wherever possible, it is 
good to put the test suite into some form that it can easily be run again 
during integration testing - preferable an electronic form where 
applying the test suite can be automated; otherwise paper form.

IV.Inspection

A. While testing will always be one part of the process of attempting to ensure 
program correctness, best results are achieved when testing is used in 
conjunction with other methods.  We will look at a number of methods that 
are based on disciplined READING of the code and REASONING about it:

B. Desk-checking: careful reading of our work ourselves, to try to 
uncover places where it is not correct - and (ultimately) to convince 
ourselves that it is correct once faults have been removed.

C. Inspections/reviews: having others read our work to help locate faults.

1. Because we know what we meant to do, we will sometimes fail to 
see places where we didn't actually SAY what we MEANT.  
Someone else may catch this for us.

2. Inspection and review can be done in many ways.

a) Informally - by asking a colleague to review our work.  (This  
approach can be used very productively when doing a project 
with a partner.)

b) Various forms of Structured Walkthroughs are often used in 
industry.  A small  group of an author's peers will listen as he/
she walks through  the logic of his/her work with them, pointing 
out things they  see that need correction or improvement.

c) Formal reviews by management.

3. An interesting fusion of the these two approaches (desk-checking 
and reviews) that has arisen recently is the idea of PAIR 
PROGRAMMING,  which is the idea behind the way we structure 
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labs in the course, and behind assigning team  projects.  However, 
having two people working independently on the same project is 
not pair programming; pair programming means two people 
ALWAYS WORKING ON EVERYTHING TOGETHER.  (One 
types; the other thinks and interacts.)

V. Basic Concepts of Formal Verification

A. Formal verification means applying the methods of mathematical proof to  
programs in order to PROVE a program correct.  Note that while testing  
only gives RELATIVE confidence in a program's correctness (unless of  
course you can test every possible input), a mathematical proof can  give 
ABSOLUTE confidence - provided its logic is correct.

1. The method of program proof is not a total substitute for testing -  since 
there can still be flaws in our proof logic.  (There is a famous example in 
the software engineering literature concerning a short program that was 
“proved” correct several times - but each time it contained a fault which 
was not caught due to an error in the logic of the proof!)

2. But when formal verification is coupled with testing and 
inspections it can give a very high degree of   confidence in 
program reliability.

3. Using the methods of mathematical proof while one is developing a 
program can help to prevent errors in the first place by helping us 
think clearly about what we are doing.

4. In practice, there are serious limitations to the usefulness of this  
approach due to the time and effort involved.  However, in critical,  
tricky portions of a program - or systems where human lives are at 
stake (e.g. airplane flight control software) it can be a powerful aid.  

B. By formal verification, we mean using the methods of mathematical 
proof to demonstrate that code MUST be correct.
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1. The starting place of formal verification is the preconditions, 
postconditions, and class invariants we identified during detailed 
design and implementation.

 

2. Recall that:

a) A precondition of a method is an assertion that describes 
conditions that the caller of a method must guarantee will hold 
when the method is  called.

b) A postcondition of a method is an assertion that describes 
conditions that  a method guarantees will hold when it 
terminates, provided it was called with its preconditions 
satisfied.  (No guarantees if the preconditions don't hold!)

c) A class invariant is an assertion that holds:

(1)When an instance of the class is first constructed.

(2)After the COMPLETION of every public method (that is 
called legally -  i.e. with its preconditions satisfied)

(3)Note that the invariant can become false during the 
execution of a public method, so long as the method 
guarantees to make it true again before it completes.

(4)The invariant need not hold for private methods, since these can 
only be called by public methods, which are allowed to make the 
invariant momentarily false as long as they finish with it true.

3. As a consequence, every public method of the class can assume 
that the class invariant holds when it is called, along with the 
preconditions.
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C. In formal verification, we prove the correctness of each public method 
by  showing all of the following:

1. If the method is called with its preconditions satisfied, and with the 
class invariant holding, then it will guarantee upon completion that 
its postconditions are satisfied. 
 

Symbolically:: 
 

{ pre & inv } M { post } 
 
PROJECT

2. If the method is called with its preconditions satisfied, and with the 
class invariant holding, then it will guarantee upon completion that 
the class invariant remains satisfied. 
 

Symbolically: 
 

{ pre & inv } M { inv } 
 
PROJECT

3. If the method is called with its preconditions satisfied, and with the 
class invariant holding, then we must also ensure that every method 
it calls has its preconditions satisfied as well (and the class 
invariant as well if it is a public method)

D. Note that, in order to prove the correctness of a public method, we 
may also need to prove the correctness of any private methods it calls.  
A private method is proved true by showing that, if it is called with its 
preconditions satisfied, it guarantees the truth of its postconditions - 
with no assumptions about the class invariant unless explicitly stated 
in pre/post conditions.

E. In developing a proof of a method, we are allowed to rely on:

1. General properties of the various statements comprising its body.
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2. The correctness of methods it calls - i.e. if our method can 
guarantee to satisfy the preconditions of any method it calls, then it 
can rely upon the postconditions of that method as part of 
establishing its own correctness.

F. Example: Coffee Can problem (discussed earlier). 

1. DEMO again

2. Recall that we saw that they key to understanding the behavior of 
the program is to realize that the even/oddness of the number of 
white beans is invariant.  Hence, if the can initially contains an odd 
number of white beans, the final bean will be white; it it initially 
contains an even number, the final bean will be black.

3. HANDOUT, discuss proof of playOneRound() and chooseBean() 

a) In the case of playOneRound(), we have  
 

{ Pre & Inv } M { Post & Inv } 

b) Note, though, that the class invariant: w mod 2 == w0 mod 2 is 
not satisfied when chooseBean() is called the second time in 
playOneRound() because the code just before may decrement w.   
This is OK, because chooseBean() is a private method and does 
not require this in its preconditions.  The class invariant is 
restored before playOneRound() terminates.

G. Two more concepts we need to consider are a LOOP INVARIANT  
and LOOP TERMINATION.

1. A loop invariant is an assertion that is known to be true the first  
time the loop body is entered, and whose truth is not altered by a   
complete execution of the loop body. 
 
EXAMPLE: Fast exponentiation we did earlier 
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HANDOUT: correctness proof - review how part 1 formalizes what 
we discussed earlier

2. Termination of Loops

a) When proving the correctness of a loop, there is one other item 
we  must consider: TERMINATION.  We need to show that the 
loop will  eventually terminate.

b)  EXAMPLE: 
 

Discuss termination proof (part 2 of proof)

3. Together, the loop invariant and the proof that the loop terminates 
establish the postcondition of the method (part 3 of proof)
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